Муниципальное общеобразовательное бюджетное учреждение средняя

общеобразовательная школа №5 п. Новочунка

Рассмотрено	Согласовано	Утверждаю
на педагогическом совете	Руководитель центра «Точка	Директор школы
Протокол №	роста»	Мжельская Н.С.
От «»20г.	Дупленко О. В.	Приказ №
	<u>«»20_</u> г.	От «»20г.

РАБОЧАЯ ПРОГРАММА

Центра образования цифрового и гуманитарного профилей «Точка роста»

Дополнительная общеразвивающая программа технической направленности «Промышленный дизайн. Проектирование материальной среды, VR/AR»

Адресат программы: 5 класс

Срок реализации: 1 год

Разработчик программы:

Серба Ю.А. - педагог дополнительного образования

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Настоящая программа по технологии для 5 класса создана на основе федерального компонента государственного стандарта основного общего образования Распоряжения Министерства просвещения РФ №Р-23 от 1 марта 2019 года "«Об утверждении методических рекомендаций по созданию мест для реализации основных и дополнительных общеобразовательных программ цифрового, естественнонаучного, гуманитарного профилей В образовательных организациях. технического И расположенных в сельской местности и малых городах, и дистанционных программ обучения определенных категорий обучающихся, в том числе на базе сетевого взаимодействия»" и авторской программы для 5 класса «Промышленный дизайн. Проектирование материальной среды. VR/AR», авторы: Саакян С.Г., Рыжов М.В., Кузнецова И.А.

В учебном плане на изучение технологии в 5 класса предусмотрено 68 часов.

Актуальность: дизайн является одной из основных сфер творческой деятельности человека, направленной на проектирование материальной среды. В современном мире дизайн охватывает практически все сферы жизни. В связи с этим всё больше возрастает потребность в высококвалифицированных трудовых ресурсах в области промышленного (индустриального) дизайна. Виртуальная и дополненная реальности — особые технологические направления, тесно связанные с другими. Эти технологии включены в список ключевых и оказывают существенное влияние на развитие рынков. Практически для каждой перспективной позиции будущего крайне полезны будут знания из области 3D-моделирования, основ программирования, компьютерного зрения и т. п. Согласно исследованиям, VR/AR-рынок развивается по многочисленным экспоненте соответственно, ему необходимы компетентные специалисты. В ходе практических занятий по программе вводного модуля обучающиеся познакомятся с виртуальной, дополненной и смешанной реальностями, поймут их особенности и возможности, выявят возможные способы применения, а также определят наиболее интересные направления для дальнейшего углубления, параллельно развивая навыки дизайн-мышления, дизайнанализа и способность создавать новое и востребованное.

Программа учебного курса «Промышленный дизайн. VR/AR» направлена на междисциплинарную проектно-художественную деятельность с интегрированием естественнонаучных, технических, гуманитарных знаний, а также на развитие инженерного и художественного мышления обучающегося.

Учебный курс «Промышленный дизайн. VR/AR» фокусируется на приобретении обучающимися практических навыков в области определения потребительской ниши товаров, прогнозирования запросов потребителей, создания инновационной продукции, проектирования технологичного изделия.

В программу учебного курса заложена работа над проектами, где обучающиеся смогут попробовать себя в роли концептуалиста, стилиста, конструктора, дизайнменеджера. В процессе разработки проекта обучающиеся коллективно обсуждают идеи решения поставленной задачи, далее осуществляют концептуальную проработку, макетирование, трёхмерное моделирование, эскизирование, визуализацию, конструирование, прототипирование, испытание полученной модели, оценку работоспособности созданной модели. В процессе обучения производится акцент на составление технических текстов, а также на навыки устной и письменной коммуникации и командной работы. Учебный курс «Промышленный дизайн. VR/AR» представляет собой самостоятельный модуль, изучаемый в течение учебного года параллельно с освоением программ основного общего образования В предметных «Математика», «Информатика», «Физика», «Изобразительное искусство», «Технология», «Русский язык». Курс «Промышленный дизайн. VR/AR» предполагает возможность участия обучающихся в соревнованиях, олимпиадах и конкурсах. Предполагается, что

обучающиеся овладеют навыками в области дизайн-эскизирования, трёхмерного компьютерного моделирования. Синергия методов и технологий, используемых в направлении «Разработка приложений виртуальной и дополненной реальности», даст обучающемуся уникальные метапредметные компетенции, которые будут полезны в сфере проектирования, моделирования объектов и процессов, разработки приложений и др. Программа даёт необходимые компетенции для дальнейшего углублённого освоения дизайнерских навыков и методик проектирования. Основными направлениями в изучении технологий виртуальной и дополненной реальности, с которыми познакомятся обучающиеся в рамках модуля, станут начальные знания о разработке приложений для различных устройств, основы компьютерного зрения, базовые моделирования. Через знакомство с технологиями создания собственных устройств и разработки приложений будут развиваться исследовательские, инженерные и проекты компетенции. Освоение этих технологий подразумевает получение ряда базовых компетенций, владение которыми критически необходим любому специалисту на конкурентном рынке труда в ST AM - профессия.

Цель программы: освоение обучающимися спектра Hard- и Soft-компетенций на предмете промышленного дизайна и VR\AR технологиями через использование кейстехнологий.

Задачи программы:

обучающие:

- объяснить базовые понятия сферы промышленного дизайна, ключевые особенности методов дизайн-проектирования, дизайн-аналитики, генерации идей;
- сформировать базовые навыки ручного макетирования и прототипирования;
- сформировать базовые навыки работы в программах трёхмерного моделирования;
- сформировать базовые навыки создания презентаций;
- сформировать базовые навыки дизайн-скетчинга;
- привить навыки проектной деятельности, в том числе использование инструментов планирования.
- объяснить базовые понятия сферы разработки приложений виртуальной и дополненной реальности: ключевые особенности технологий и их различия между собой, панорамное фото и видео, трекинг реальных объектов, интерфейс, полигональное моделирование;
- сформировать навыки выполнения технологической цепочки разработки приложений для мобильных устройств и/или персональных компьютеров с использованием специальных программных сред

развивающие:

- формировать 4К-компетенции (критическое мышление, креативное мышление, коммуникация, кооперация);
- способствовать расширению словарного запаса;
- способствовать развитию памяти, внимания, технического мышления, изобретательности;
- способствовать формированию интереса к знаниям;
- способствовать формированию умения практического применения полученных знаний;
- сформировать умение формулировать, аргументировать и отстаивать своё мнение;
- сформировать умение выступать публично с докладами, презентациями и т. п.
- на протяжении всех занятий формировать 4К-компетенции (критическое мышление, креативное мышление, коммуникация, кооперация);

воспитательные:

- воспитывать аккуратность и дисциплинированность при выполнении работы;
- способствовать формированию положительной мотивации к трудовой деятельности;
- способствовать формированию опыта совместного и индивидуального творчества при выполнении командных заданий;
- воспитывать трудолюбие, уважение к труду;

- формировать чувство коллективизма и взаимопомощи;
- воспитывать чувство патриотизма, гражданственности, гордости за отечественные достижения в промышленном дизайне.

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА, КУРСА

- критическое отношение к информации и избирательность её восприятия;
- осмысление мотивов своих действий при выполнении заданий;
- развитие любознательности, сообразительности при выполнении разнообразных заданий проблемного и эвристического характера;
- развитие внимательности, настойчивости, целеустремлённости, умения преодолевать трудности;
- развитие самостоятельности суждений, независимости и нестандартности мышления;
- освоение социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах;
- формирование коммуникативной компетентности в общении и сотрудничестве с другими обучающимися.

Метапредметные результаты

Регулятивные универсальные учебные действия:

- умение принимать и сохранять учебную задачу;
- умение планировать последовательность шагов алгоритма для достижения цели;
- умение ставить цель (создание творческой работы), планировать достижение этой цели;
- умение осуществлять итоговый и пошаговый контроль по результату;
- способность адекватно воспринимать оценку наставника и других обучающихся;
- умение различать способ и результат действия;
- умение вносить коррективы в действия в случае расхождения результата решения задачи на основе её оценки и учёта характера сделанных ошибок;
- умение в сотрудничестве ставить новые учебные задачи;
- способность проявлять познавательную инициативу в учебном сотрудничестве;
- умение осваивать способы решения проблем творческого характера в жизненных ситуациях;
- умение оценивать получающийся творческий продукт и соотносить его с изначальным замыслом, выполнять по необходимости коррекции либо продукта, либо замысла.

Познавательные универсальные учебные действия:

- умение осуществлять поиск информации в индивидуальных информационных архивах обучающегося, информационной среде образовательного учреждения, федеральных хранилищах информационных образовательных ресурсов;
- умение использовать средства информационных и коммуникационных технологий для решения коммуникативных, познавательных и творческих задач;
- умение ориентироваться в разнообразии способов решения задач;
- умение осуществлять анализ объектов с выделением существенных и несущественных признаков;
- умение проводить сравнение, классификацию по заданным критериям;
- умение строить логические рассуждения в форме связи простых суждений об объекте;
- умение устанавливать аналогии, причинно-следственные связи;
- умение моделировать, преобразовывать объект из чувственной формы в модель, где выделены существенные характеристики объекта (пространственно-графическая или знаковосимволическая);
- умение синтезировать, составлять целое из частей, в том числе самостоятельно достраивать с восполнением недостающих компонентов.

Коммуникативные универсальные учебные действия:

• умение аргументировать свою точку зрения на выбор оснований и критериев при выделении признаков, сравнении и классификации объектов;

- умение выслушивать собеседника и вести диалог;
- способность признавать возможность существования различных точек зрения и право каждого иметь свою;
- умение планировать учебное сотрудничество с наставником и другими обучающимися: определять цели, функции участников, способы взаимодействия;
- умение осуществлять постановку вопросов: инициативное сотрудничество в поиске и сборе информации;
- умение разрешать конфликты: выявление, идентификация проблемы, поиск и оценка альтернативных способов разрешения конфликта, принятие решения и его реализация;
- умение с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации;
- владение монологической и диалогической формами речи.

Предметные результаты

В результате освоения программы обучающиеся должны знать:

• правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием.

уметь:

- применять на практике методики генерирования идей; методы дизайн-анализа и дизайн-исследования;
- анализировать формообразование промышленных изделий;
- строить изображения предметов по правилам линейной перспективы;
- передавать с помощью света характер формы;
- различать и характеризовать понятия: пространство, ракурс, воздушная перспектива;
- получать представления о влиянии цвета на восприятие формы объектов дизайна;
- применять навыки формообразования, использования объёмов в дизайне (макеты из бумаги, картона);
- работать с программами трёхмерной графики (Fusion 360);
- описывать технологическое решение с помощью текста, рисунков, графического изображения;
- анализировать возможные технологические решения, определять их достоинства и недостатки в контексте заданной ситуации;
- оценивать условия применимости технологии, в том числе с позиций экологической защищённости;
- выявлять и формулировать проблему, требующую технологического решения;
- модифицировать имеющиеся продукты в соответствии с ситуацией/заказом/потребностью/задачей деятельности;
- оценивать коммерческий потенциал продукта и/или технологии;
- проводить оценку и испытание полученного продукта;
- представлять свой проект.

владеть: научной терминологией, ключевыми понятиями, методами и приёмами проектирования, конструирования, моделирования, макетирования, прототипирования в области промышленного (индустриального) дизайна.

Смежные предметы основного общего образования

Математика

Статистика и теория вероятностей ученик научится:

- представлять данные в виде таблиц, диаграмм;
- читать информацию, представленную в виде таблицы, диаграммы.

В повседневной жизни и при изучении других предметов ученик сможет:

• извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений.

Математика

Геометрические фигуры

ученик научится:

- оперировать на базовом уровне понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.
- повседневной жизни и при изучении других предметов выпускник сможет: решать практические задачи с применением простейших свойств фигур.

Измерения и вычисления

ученик научится:

• выполнять измерение длин, расстояний, величин углов с помощью инструментов для измерений длин и углов.

Информатика

ученик научится:

- различать виды информации по способам её восприятия человеком и по способам ее представления на материальных носителях;
- приводить примеры информационных процессов (процессов, связанных с хранением, преобразованием и передачей данных) в живой природе и технике;
- классифицировать средства ИКТ в соответствии с кругом выполняемых задач.

Математические основы информатики ученик получит возможность:

познакомиться с примерами математических моделей и использования компьютеров при их анализе; понять сходства и различия между математической моделью объекта и его натурной моделью, между математической моделью объекта/явления и словесным описанием.

Использование программных систем и сервисов ученик научится:

- классифицировать файлы по типу и иным параметрам;
- выполнять основные операции с файлами (создавать, сохранять, редактировать, удалять, архивировать, «распаковывать» архивные файлы).

ученик овладеет (как результат применения программных систем и интернетсервисов в данном курсе и во всём образовательном процессе):

- навыками работы с компьютером; знаниями, умениями и навыками, достаточными для работы с различными видами программных систем и интернет-сервисов (файловые менеджеры, текстовые редакторы, электронные таблицы, браузеры, поисковые системы, словари, электронные энциклопедии); умением описывать работу этих систем и сервисов с использованием соответствующей терминологии;
- различными формами представления данных (таблицы, диаграммы, графики и т. д.);
- познакомится с программными средствами для работы с аудиовизуальными данными и соответствующим понятийным аппаратом.

ученик получит возможность (в данном курсе и иной учебной деятельности):

- практиковаться в использовании основных видов прикладного программного обеспечения (редакторы текстов, электронные таблицы, браузеры и др.);
- познакомиться с примерами использования математического моделирования в современном мире;
 - познакомиться с постановкой вопроса о том, насколько достоверна полученная информация, подкреплена ли она доказательствами подлинности (пример: наличие

электронной натурной моделью, между математической моделью объекта/явления и словесным описанием.

Использование программных систем и сервисов ученик научится:

- классифицировать файлы по типу и иным параметрам;
- выполнять основные операции с файлами (создавать, сохранять, редактировать, удалять, архивировать, «распаковывать» архивные файлы).

ученик овладеет (как результат применения программных систем и интернетсервисов в данном курсе и во всём образовательном процессе):

- навыками работы с компьютером; знаниями, умениями и навыками, достаточными для работы с различными видами программных систем и интернет-сервисов (файловые менеджеры, текстовые редакторы, электронные таблицы, браузеры, поисковые системы, словари, электронные энциклопедии); умением описывать работу этих систем и сервисов с использованием соответствующей терминологии;
- различными формами представления данных (таблицы, диаграммы, графики и т. д.);
- познакомится с программными средствами для работы с аудиовизуальными данными и соответствующим понятийным аппаратом.

ученик получит возможность (в данном курсе и иной учебной деятельности):

- практиковаться в использовании основных видов прикладного программного обеспечения (редакторы текстов, электронные таблицы, браузеры и др.);
- познакомиться с примерами использования математического моделирования в современном мире;
- познакомиться с постановкой вопроса о том, насколько достоверна полученная информация, подкреплена ли она доказательствами подлинности (пример: наличие электронной анализировать возможные технологические решения, определять их достоинства и недостатки в контексте заданной ситуации;
- проводить и анализировать разработку и/или реализацию прикладных проектов, предполагающих:
- определение характеристик и разработку материального продукта, включая его моделирование в информационной среде (конструкторе),
- встраивание созданного информационного продукта в заданную оболочку,
- изготовление информационного продукта по заданному алгоритму в заданной оболочке;
- проводить и анализировать разработку и/или реализацию технологических проектов, предполагающих:
- оптимизацию заданного способа (технологии) получения требующегося материального продукта (после его применения в собственной практике),
- разработку (комбинирование, изменение параметров и требований к ресурсам) технологии получения материального и информационного продукта с заданными свойствами;
- проводить и анализировать разработку и/или реализацию проектов, предполагающих:
- планирование (разработку) материального продукта в соответствии с задачей собственной деятельности (включая моделирование и разработку документации),
- планирование (разработку) материального продукта на основе самостоятельно проведённых исследований потребительских интересов.

ученик получит возможность научиться:

- выявлять и формулировать проблему, требующую технологического решения;
- модифицировать имеющиеся продукты в соответствии с ситуацией/заказом/потребностью/задачей деятельности и в соответствии с их характеристиками разрабатывать технологию на основе базовой технологии;

технологизировать свой опыт, представлять на основе ретроспективного анализа и унификации деятельности описание в виде инструкции или технологической карты.

Формы подведения итогов реализации общеобразовательной программы

Подведение итогов реализуется в рамках презентации и защиты результатов выполнения кейсов, представленных в программе.

Формы демонстрации результатов обучения

Представление результатов образовательной деятельности пройдёт в форме публичной презентации решений кейсов командами и последующих ответов выступающих на вопросы наставника и других команд.

Формы диагностики результатов обучения Беседа, тестирование, опрос.

3. учебный план

№	Название раздела, темы	Колич	нество часо	Формы аттестации/	
п/п		Всего	Теория	Практика	контроля
1	Кейс "Объект из будущего"	12	4	8	Презентация
2	Кейс «Пенал»	12	1	11	Презентация
3	Кейс «Космическая станция»	12	2	10	Презентация
4	Кейс «Как это устроено?»	12	2	10	Презентация
5	Кейс «Механическое устройство»	14	2	12	Презентация
6	Проектируем идеальное VR-устройство	6	2	4	Презентация
Bcei	го часов:	68	13	55	

Кейс 1. «Объект из будущего»

Знакомство с методикой генерирования идей с помощью карты ассоциаций. Применение методики на практике. Генерирование оригинальной идеи проекта.

- 1. Формирование команд. Построение карты ассоциаций на основе социального и технологического прогнозов будущего. Формирование идей на базе многоуровневых ассоциаций. Проверка идей с помощью сценариев развития и «линз» (экономической, технологической, социально-политической и экологической). Презентация идеи продукта группой.
- 2. Изучение основ скетчинга: инструментарий, постановка руки, понятие перспективы, построение простых геометрических тел. Фиксация идеи проекта в технике скетчинга. Презентация идеи продукта группой.
- 3. Создание макета из бумаги, картона и ненужных предметов. Упаковка объекта, имитация готового к продаже товара. Презентация проектов по группам.
- 4. Изучение основ скетчинга: понятие света и тени; техника передачи объёма. Создание подробного эскиза проектной разработки в технике скетчинга.

Примечание: при наличии оборудования можно изучать технику маркерного или цифрового скетча.

Кейс 2. «Пенал»

Понятие функционального назначения промышленных изделий. Связь функции и формы в промышленном дизайне. Анализ формообразования (на примере школьного пенала). Развитие критического мышления, выявление неудобств в пользовании промышленными изделиями. Генерирование идей по улучшению промышленного изделия. Изучение основ макетирования из бумаги и картона. Представление идеи проекта в эскизах и макетах.

- 1. Формирование команд. Анализ формообразования промышленного изделия на примере школьного пенала. Сравнение разных типов пеналов (для сравнения используются пеналы обучающихся), выявление связи функции и формы.
- 2. Выполнение натурных зарисовок пенала в технике скетчинга.
- 3. Выявление неудобств в пользовании пеналом. Генерирование идей по улучшению объекта. Фиксация идей в эскизах и плоских макетах.
- 4. Создание действующего прототипа пенала из бумаги и картона, имеющего принципиальные отличия от существующего аналога.
- 5. Испытание прототипа. Внесение изменений в макет. Презентация проекта перед аудиторией.

Кейс 3. «Космическая станция»

Знакомство с объёмно-пространственной композицией на примере создания трёхмерной модели космической станции.

- 1. Понятие объёмно-пространственной композиции в промышленном дизайне на примере космической станции. Изучение модульного устройства космической станции, функционального назначения модулей.
- 2. Основы 3D-моделирования: знакомство с интерфейсом программы Fusion 360, освоение проекций и видов, изучение набора команд и инструментов.
- 3. Создание трёхмерной модели космической станции в программе Fusion 360.
- 4. Изучение основ визуализации в программе Fusion 360, настройки параметров сцены. Визуализация трёхмерной модели космической станции.

Кейс 4. «Как это устроено?»

Изучение функции, формы, эргономики, материала, технологии изготовления, принципа функционирования промышленного изделия.

- 1. Формирование команд. Выбор промышленного изделия для дальнейшего изучения. Анализ формообразования и эргономики промышленного изделия.
- 2. Изучение принципа функционирования промышленного изделия. Разбор промышленного изделия на отдельные детали и составные элементы. Изучение внутреннего устройства.
- 3. Подробная фотофиксация деталей и элементов промышленного изделия.
- 4. Подготовка материалов для презентации проекта (фото- и видеоматериалы).
- 5. Создание презентации. Презентация результатов исследования перед аудиторией.

Кейс 5. «Механическое устройство»

Изучение на практике и сравнительная аналитика механизмов набора LEGO Education «Технология и физика». Проектирование объекта, решающего насущную проблему, на основе одного или нескольких изученных механизмов.

- 1. Введение: демонстрация и диалог на тему устройства различных механизмов и их применения в жизнедеятельности человека.
- 2. Сборка выбранного на прошлом занятии механизма с использованием инструкции из набора и при минимальной помощи наставника.
- 3. Демонстрация работы собранных механизмов и комментарии принципа их работы. Сессия вопросов-ответов, комментарии наставника.

- 4. Введение в метод мозгового штурма. Сессия мозгового штурма с генерацией идей устройств, решающих насущную проблему, в основе которых лежит принцип работы выбранного механизма.
- 5. Отбираем идеи, фиксируем в ручных эскизах.
- 6. 3D-моделирование объекта во Fusion 360.
- 7. 3D-моделирование объекта во Fusion 360, сборка материалов для презентации. Выбор и присвоение модели материалов. Настройка сцены. Рендеринг.
- 9. Сборка презентации в Readymag, подготовка защиты. Защита командами проектов.

Календарно-тематический план

№	Название раздела, темы	Количество часов			Дата	
п/п		Всего	Теория	Практика	Теория	Практика
1	Кейс «Объект из будущего»	12	4	8		
2	Введение. Методики формирования идей	4	1	3		
3	Урок рисования (перспектива, линия, штриховка)	2	1	1		
4	Создание прототипа объекта промышленного дизайна	4	1	3		
5	Урок рисования (способы передачи объёма, светотень)	2	1	1		
6	Кейс «Пенал»	12	1	11		
7	Анализ формообразования промышленного изделия	2		2		
8	Натурные зарисовки промышленного изделия	2		2		
9	Генерирование идей по улучшению промышленного изделия	2		2		
10	Создание прототипа промышленного изделия из бумаги и картона	4	1	3		
11	Испытание прототипа. Презентация проекта перед аудиторией	2		2		
12	Кейс «Космическая станция»	12	2	10		
13	Создание эскиза объёмно- пространственной композиции	2		2		
14	Урок 3D- моделирования(Fusion 360)	4	1	3		

	Создание объёмно-				ĺ	
	пространственной Fusion	4		4		
15	360	•				
	Основы визуализации в	•	4			
16	программе Fusion 360	2	1	1		
17	Кейс «Как это устроено?»	12	2	10		
	Изучение функции, формы,					
	эргономики	2	1	1		
18	промышленного изделия					
	Изучение устройства и					
	принципа	2	1	1		
	функционирования	2	1	1		
19	промышленного изделия					
	Фотофиксация элементов	2		2		
20	промышленного изделия	2		2		
	Подготовка материалов для	2		2		
21	презентации проекта	2		2		
22	Создание презентации	4		4		
	Кейс «Механическое	14	2	12		
23	устройство»	14	2	12		
	Введение: демонстрация	2	2			
24	механизмов, диалог		2			
	Сборка механизмов из					
	набора LEGO	2		1		
	Education«Технология и	2		1		
25	физика»					
	Демонстрация механизмов,	2		1		
26	сессия вопросов-ответов					
27	Мозговой штурм	2		1		
28	Выбор идей. Эскизирование	2		1		
29	3D-моделирование	2		1		
	3D-моделирование, сбор	_				
20	материалов для	2		1		
30	презентации					
31	Рендеринг	2		2		
32	Создание презентации,	2		2		
	подготовка защиты					
33	Защита проектов	2		2		
2.4	Проектируем идеальное	6	2	4		
34	VR-устройство					
	Знакомство. Техника					
	безопасности. Вводное					
	занятие («Создавай миры»).		1			
	Введение в технологии виртуальной и дополненной					
35	реальности).					
33	знакомство с VR-					
	технологиями на					
	интерактивной вводной		1			
36	лекции.					
20	montain.		i		I	

	Тестирование устройства,				
	установка приложений,				
	анализ принципов работы,			2	
	выявление ключевых				
37	характеристик				
	Выявление принципов				
	работы шлема виртуальной				
	реальности, поиск, анализ и			2	
	структурирование			2	
	информации о других VR-				
38	устройствах				
	Всего часов:	68	26	42	

5. МАТЕРИАЛЬНО-ТЕХНИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ Аппаратное и техническое обеспечение:

Компьютерный класс ИКТ

- Рабочее место обучающегося:
- ноутбук: производительность процессора (по тесту PassMark
- CPU BenchMark http://www.cpubenchmark.net/): не менее 2000 единиц; объём оперативной памяти: не менее 4 Гб; объём накопителя SSD/eMMC: не менее 128 Гб (или соответствующий по характеристикам персональный компьютер с монитором, клавиатурой и колонками); мышь.
- Рабочее место наставника:

ноутбук: процессор Intel Core i5-4590/AMD FX 8350 — аналогичная или более новая модель, графический процессор NVIDIA GeForce GTX 970, AMD Radeon R9 290 — аналогичная или более новая модель, объём оперативной памяти: не менее 4 Гб, видеовыход HDMI 1.4, DisplayPort 1.2 или более новая модель (или соответствующий по характеристикам персональный компьютер с монитором, клавиатурой и колонками); презентационное оборудование с возможностью подключения к компьютеру — 1 комплект; флипчарт с комплектом листов/ маркерная доска, соответствующий набор письменных принадлежностей — 1 шт.; единая сеть Wi-Fi.

Программное обеспечение:

- офисное программное обеспечение;
- программное обеспечение для трёхмерного моделирования (Autodesk Fusion 360);
- графический редактор.
- программная среда для разработки приложений с виртуаль- ной и дополненной реальностью (Unity 3D/Unreal Engine);
- графический редактор на выбор наставника
- Рабочее место обучающегося: ноутбук: производительность процессора (по тесту PassMark CPU BenchMark http://www.cpubenchmark.net/): не менее 2000 единиц; объём оперативной памяти: не менее 4 Гб; объём накопителя SSD/е MMC: не менее 128 Гб (или соответствующий по характеристикам персональный компьютер с монитором, клавиатурой и колонками); мышь.
- Рабочее место наставника: ноутбук: процессор Intel Core i5-4590/AMD FX 8350 аналогичная или более новая модель, графический процессор NVIDIA GeForce GTX 970, AMD Radeon R9 290 аналогичная или более новая модель, объём оперативной памяти: не менее 4 Гб, видеовыход HDMI 1.4, DisplayPort 1.2 или более новая модель (или соответствующий по характеристикам персональный компьютер с монитором, клавиатурой и колонками);
- шлем виртуальной реальности HTC Vive или Vive Pro Full Kit 1 шт.;

- личные мобильные устройства обучающихся и/или наставника с операционной системой Android;
- презентационное оборудование с возможностью подключения к компьютеру 1 комплект;
- флипчарт с комплектом листов/маркерная доска, соответствующий набор письменных принадлежностей 1 шт.;
- единая сеть Wi-Fi.

Расходные материалы:

- бумага А4 для рисования и распечатки;
- бумага АЗ для рисования;
- набор простых карандашей по количеству обучающихся;
- набор чёрных шариковых ручек по количеству обучающихся;
- клей ПВА 2 шт.;
- клей-карандаш по количеству обучающихся;
- скотч прозрачный/матовый 2 шт.;
- скотч двусторонний 2 шт.;
- картон/гофрокартон для макетирования 1200*800 мм, по одному листу на двух обучающихся;
- нож макетный по количеству обучающихся;
- лезвия для ножа сменные 18 мм 2 шт.;
- ножницы по количеству обучающихся;
- коврик для резки картона по количеству обучающихся;
- PLA-пластик 1,75 REC нескольких цветов.

Список литературы

- 1. Адриан Шонесси. Как стать дизайнером, не продав душу дьяволу / Питер.
- 2. Жанна Лидтка, Тим Огилви. Думай как дизайнер. Дизайн-мышление для менеджеров / Манн, Иванов и Фербер.
- 3. Майкл Джанда. Сожги своё портфолио! То, чему не учат в дизайнерских школах / Питер.
- 4. Фил Кливер. Чему вас не научат в дизайн-школе / Рипол Классик.
- 5. Bjarki Hallgrimsson. Prototyping and Modelmaking for Product Design (Portfolio Skills) / Paperback, 2012.
- 6. Jennifer Hudson. Process 2nd Edition: 50 Product Designs from Concept to Manufacture.
- 7. Jim Lesko. Industrial Design: Materials and Manufacturing Guide.
- 8. Kevin Henry. Drawing for Product Designers (Portfolio Skills: Product Design) / Paperback, 2012.
- 9. Koos Eissen, Roselien Steur. Sketching: Drawing Techniques for Product Designers / Hardcover, 2009.
- 10. Kurt Hanks, Larry Belliston. Rapid Viz: A New Method for the Rapid Visualization of Ideas.
- 11. Rob Thompson. Prototyping and Low-Volume Production (The Manufacturing Guides). Rob Thompson. Product and Furniture Design (The Manufacturing Guides).